Abstract

Features of particle emission and critical point behavior are investigated as functions of the isospin of disassembling sources and temperature at a moderate freeze-out density for medium-size Xe isotopes in the framework of isospin dependent lattice gas model. Multiplicities of emitted light particles, isotopic and isobaric ratios of light particles show the strong dependence on the isospin of the dissociation source, but double ratios of light isotope pairs and the critical temperature determined by the extreme values of some critical observables are insensitive to the isospin of the systems. Values of the power law parameter of cluster mass distribution, mean multiplicity of intermediate mass fragments ($IMF$), information entropy ($H$) and Campi's second moment ($S_2$) also show a minor dependence on the isospin of Xe isotopes at the critical point. In addition, the slopes of the average multiplicites of the neutrons ($N_n$), protons ($N_p$), charged particles ($N_{CP}$), and IMFs ($N_{imf}$), slopes of the largest fragment mass number ($A_{max}$), and the excitation energy per nucleon of the disassembling source ($E^*/A$) to temperature are investigated as well as variances of the distributions of $N_n$, $N_p$, $N_{CP}$, $N_{IMF}$, $A_{max}$ and $E^*/A$. It is found that they can be taken as additional judgements to the critical phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.