Abstract

Concerning the Laplace operator with homogeneous Dirichlet boundary conditions, the classical notion of isospectrality assumes that two domains are related when they give rise to the same spectrum. In two dimensions, non isometric, isospectral domains exist. It is not known however if all the eigenvalues relative to a specific domain can be preserved under suitable continuous deformation of its geometry. We show that this is possible when the 2D Laplacian is replaced by a finite dimensional version and the geometry is modified by respecting certain constraints. The analysis is carried out in a very small finite dimensional space, but it can be extended to more accurate finite-dimensional representations of the 2D Laplacian, with an increase of computational complexity. The aim of this paper is to introduce the preliminary steps in view of more serious generalizations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.