Abstract
The management of mineral elements in agriculture is important for their nutritional role for plants and dietary value for humans, sparking interest in strategies that can increase mineral use efficiency and accumulation in plant food. In this work, we evaluated the effects of the isosmotic variations of the concentration on three macrocations (K, Ca, and Mg) in lettuce (Lactuca sativa L.). Our aim was to improve the nutritional components of this valuable dietary source of minerals. Using a full factorial design, we analyzed mineral utilization efficiency (UtE), leaf morphology, gas exchange parameters, phenolic profiles (through ultra-high performance liquid chromatography coupled to a quadrupole-time-of-flight (UHPLC-QTOF) mass spectrometry), and enzymatic activities in two phytochemically diverse butterhead lettuce varieties (red or green). Plants were fed in hydroponics with three nutrient solutions (NSs) with different ratios of K, Ca, and Mg. The variation of these minerals in the edible product was associated with alterations of the morphology and physiology of the leaves, and of the quality and functional properties of lettuce, with a trade-off between total accumulation and mineral UtE. Moreover, in non-limiting conditions of nutrient availability, significant mineral interactions were also present. The flexibility of the plant response to the different ratios of macrocations, and the observed large intraspecific variation, were adequate to provide mineral-specific phytochemical profiles to the edible product. Specifically, the full-red lettuce provided more interesting results in regard to the compositional and functional attributes of the leaves.
Highlights
Plants, humans, and any other living organism need inorganic elements to carry out their life cycle, which leads to the definition of essential nutrients for those that are considered irreplaceable and necessary for the biochemical processes that support growth and reproduction (O’dell and Sunde, 1997)
We investigated the effects of the combinatorial variation of macrocations availability in two morphologically similar butterhead lettuce varieties that strongly differ in leaf color, green or red
Our work indicated that the two varieties did not differ in the utilization index, while higher amounts of the mineral element in the nutrient solutions (NSs) are associated with higher mineral content per Fresh weight (FW)
Summary
Humans, and any other living organism need inorganic elements to carry out their life cycle, which leads to the definition of essential nutrients for those that are considered irreplaceable and necessary for the biochemical processes that support growth and reproduction (O’dell and Sunde, 1997). Autotrophic plants acquire minerals from the soils primarily as inorganic ions, representing the ultimate dietary source of minerals (Grusak, 2002). These are typically distinguished as macronutrients and micronutrients. The essential mineral elements for plants that are required in high quantities (i.e., N, P, K, Ca, Mg, and S) are classified as macronutrients. They have a relative concentration often between 0.2 and 4% of the total plant dry weight (DW) (Marschner, 2011). Physiological disorders in some populations or livestock are usually reported for the deficiency of Ca and Mg, within the macrominerals (i.e., those required between 100 and 1,000 mg/day), and Cu, Zn, I, and Se, within the trace elements (i.e., those required
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.