Abstract

This article introduces the concept of isosingular sets, which are irreducible algebraic subsets of the set of solutions to a system of polynomial equations constructed by taking the closure of points with a common singularity structure. The definition of these sets depends on deflation, a procedure that uses differentiation to regularize solutions. A weak form of deflation has proven useful in regularizing algebraic sets, making them amenable to treatment by the algorithms of numerical algebraic geometry. We introduce a strong form of deflation and define deflation sequences, which, in a different context, are the sequences arising in Thom---Boardman singularity theory. We then define isosingular sets in terms of deflation sequences. We also define the isosingular local dimension and examine the properties of isosingular sets. While isosingular sets are of theoretical interest as constructs for describing singularity structures of algebraic sets, they also expand the kinds of algebraic set that can be investigated with methods from numerical algebraic geometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.