Abstract
It is shown that every automorphism of an adjoint Chevalley group over an integral domain containing the rational number field is uniquely expressible as the product of a ring automorphism, a graph automorphism and an inner automorphism while every isomorphism between simple adjoint Chevalley groups can be expressed uniquely as the product of a ring isomorphism, a graph isomorphism and an inner automorphism. The isomorphisms between the elementary subgroups are also found having analogous expressions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.