Abstract

Let Ω and I denote a compact metrizable space with card(Ω)≥2 and the unit interval, respectively. We prove Milutin and Cantor-Bernstein type theorems for the spaces M(Ω) of Radon measures on compact Hausdorff spaces Ω. In particular, we obtain the following results: (1) for every infinite closed subset K of βN the spaces M(K), M(βN), and M(Ω2ℵ0) are order-isometric; (2) for every discrete space Γ with m≔card(Γ)>ℵ0 the spaces M(βΓ) and M(I2m) are order-isometric, whereas there is no linear homeomorphic injection from C(βT) into C(I2m).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.