Abstract

Six experiments were conducted to validate an Ile-deficient diet and determine the Ile requirement of 80- to 120-kg barrows. Experiment 1 had five replications, and Exp. 2 through 6 had four replications per treatment; all pen replicates had four crossbred barrows each (initial BW were 93, 83, 85, 81, 81, and 88 kg, respectively). All dietary additions were on an as-fed basis. In Exp. 1, pigs were fed a corn-soybean meal diet (C-SBM) or a corn-5% blood cell (BC) diet with or without 0.26% supplemental Ile (C-BC or C-BC+Ile) in a 28-d growth assay. On d 14, pigs receiving the C-BC diet were taken off experiment as a result of a severe decrease in ADFI. Growth performance did not differ for pigs fed C-SBM or C-BC + Ile (P = 0.36) over the 28-d experiment. In Exp. 2, pigs were fed the C-BC diet containing 0.24, 0.26, 0.28, 0.30, or 0.32% true ileal digestible (TD) Ile for 7 d in an attempt to estimate the Ile requirement using plasma urea N (PUN) as the response variable. Because of incremental increases in ADFI as TD Ile increased, PUN could not be used to estimate the Ile requirement. In Exp. 3, pigs were fed the C-BC diet containing 0.28, 0.30, 0.32, 0.34, or 0.36% TD Ile. Daily gain, ADFI, and G:F increased linearly (P < 0.01) as Ile increased in the diet. Even though there were no effects of TD Ile concentration on 10th rib fat depth or LM area, kilograms of lean increased linearly (P < 0.01) as TD Ile level increased. In Exp. 4, pigs were fed a C-SBM diet containing 0.26, 0.31, or 0.36% TD Ile. There were no differences in ADFI or ADG; however, G:F increased linearly (P = 0.02), with the response primarily attributable to the 0.31% Ile diet. In Exp. 5, pigs were fed 0.24, 0.27, 0.30, 0.33, or 0.36% TD Ile in a C-SBM diet. There were no differences in growth performance; however, average backfat, total fat, and percentage of fat increased quadratically (P < 0.10) with the addition of Ile. In Exp. 6, pigs were fed a 0.26% TD Ile C-SBM diet with or without crystalline Leu and Val to simulate the branched-chain AA balance of a C-BC diet. There were no differences in ADFI or ADG, but G:F increased (P = 0.09) when Leu and Val were added. In summary, the Ile deficiency of a C-BC diet can be corrected by the addition of Ile, and because ADFI was affected by Ile addition, the PUN method was not suitable for assessing the Ile requirement. The TD Ile requirement for 80- to 120-kg barrows for maximizing growth performance and kilograms of lean is not < 0.34% in a C-BC diet, but may be as low as 0.24% in a C-SBM diet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.