Abstract

The hierarchical metal–organic frameworks (MOFs), such as Y(BTC)(H2O)6, are prepared with yttrium nitrate and benzene-1,3,5-tricarboxylic acid at room temperature. The product is characterized by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The Y(BTC)(H2O)6 particles are sufficiently rigid for performing solid phase extraction and they exhibit favorable selectivity toward the adsorption of hemoglobin. The adsorption behavior of hemoglobin onto the Y(BTC)(H2O)6 fits the Langmuir adsorption model with a theoretical adsorption capacity of 555.6 mg g−1. An adsorption efficiency of 87.7% for 100 μg mL−1 hemoglobin in 1 mL sample solution (at pH 6.0) is achieved with 0.40 mg Y(BTC)(H2O)6. 77.3% of the retained hemoglobin is readily recovered using a 0.5% (m/v) SDS solution as the stripping reagent. Circular dichroism spectra indicated that the conformation of hemoglobin is maintained during the adsorption–desorption process. The MOFs material is applied for the isolation of hemoglobin from human blood and the purity of the obtained hemoglobin is further verified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.