Abstract
Intensive efforts are underway to restore depleted stocks of Crassostrea virginica in Chesapeake Bay. However, the extent of gene flow among local populations, an important force mediating the success of these endeavors, is poorly understood. Spatial and temporal population structures were examined in C. virginica from Chesapeake Bay using eight microsatellite loci. Deficits in heterozygosity relative to Hardy-Weinberg expectations were seen at all loci and were best explained by null alleles. Permutation tests indicated that heterozygote deficiency reduced power in tests of differentiation. Nonetheless, genotypic exact tests demonstrated significant levels of geographic differentiation overall, and a subtle pattern of isolation by distance (IBD) was observed. Comparisons between age classes failed to show differences in genotype frequencies, allelic richness, gene diversity, or differentiation as measured by F(ST), contrary to predictions made by the sweepstakes hypothesis. The IBD pattern could reflect an evolutionary equilibrium established because local gene flow predominates, or be influenced in either direction by recent anthropogenic activities. An evolutionary interpretation appears justified as more parsimonious, implying that local efforts to restore oyster populations will have local demographic payoffs, perhaps at the scale of tributaries or regional subestuaries within Chesapeake Bay.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.