Abstract

The interaction of glycan-binding proteins (GBPs) and glycans plays a significant biological role that ranges from cell-cell recognition to cell trafficking, and glycoprotein targeting. The anomalies of GBPs related to the types and/or quantities were not clearly known in cancer incidence. It is imperative to identify and annotate the GBPs related with the canceration. Here the mannose-binding proteins (MBPs) from the clinical sera were isolated and identified by the mannose-magnetic particle conjugates and the high-accuracy MS analysis. Seventy-five MBPs from normal donors' sera and 79 MBPs from hepatocellular carcinoma patients' sera were identified and annotated. By using the stringent criteria of exponentially modified protein abundance index (emPAI) quantification, 12 MBPs were estimated to be significantly upregulated (emPAI ratio > 4) and nine MBPs were estimated to be significantly downregulated (emPAI ratio < 0.25) in the hepatocellular carcinoma sera. Real-time quantitative PCR, Western blotting, and protein microarrays were also used to confirm the altered MBPs expression level and the specific binding between the isolated MBPs and mannose. The sequence recognition motifs and structure preference of the isolated MBPs were characterized. The functional enrichment analysis revealed that over 57% of the isolated MBPs were binding protein and the upregulated MBPs were involved in cell death, tumor progression, and macromolecular complex remodeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.