Abstract

Simple SummaryPromoting fat deposition in beef cattle has been a focus of modern animal breeding research. However, previous researchers have not examined the mechanism of adipogenesis in much detail. MicroRNAs (miRNAs) are small noncoding RNAs that play a pivotal role in adipogenesis. In this study, to explore the molecular regulatory mechanism of adipocyte differentiation and formation, bovine preadipocytes were isolated and induced into adipocytes, and then the expression patterns of miRNAs between preadipocytes and adipocytes were detected through RNA sequencing. Deep sequence analysis has identified 78, 71, and 48 novel miRNAs and 497, 491, and 524 known miRNAs in the preadipocytes, and 44, 54, and 47 novel miRNAs and 519, 522, and 504 known miRNAs in the adipocytes. Among the annotated miRNAs, 131 bovine miRNAs were upregulated in adipocytes, and 119 bovine miRNAs were downregulated in adipocytes, such as bta-miR-3604, bta-miR-23b-3p, bta-miR-26a, and bta-miR-129-3p. Bovine target gene prediction results of these miRNAs show that numerous genes are associated with lipid metabolism. These results can provide both technical support and a research basis for promoting bovine adipocyte fat deposition.The elucidation of the mechanisms of preadipocyte differentiation and fat accumulation in adipocytes is a major work in beef cattle breeding. As important post-transcriptional regulators, microRNAs (miRNAs) take part in cell proliferation, differentiation, apoptosis, and fat metabolism through binding seed sites of targeting mRNAs. The aim of this study was to isolate and identify bovine preadipocytes and screen miRNAs associated with adipogenesis. Bovine preadipocytes were isolated from subcutaneous fatty tissue and induced to differentiate into adipocytes. Verification of preadipocytes and adipocytes was performed by qRT-PCR (real-time quantitative reverse transcription PCR), Oil Red O staining, and immunofluorescence staining. Total RNA was extracted for small RNA sequencing. The sequencing data showed that 131 miRNAs were highly expressed in adipocytes, and 119 miRNAs were highly expressed in preadipocytes. Stem–loop qPCR (stem–loop quantitative real-time PCR) results showed that the expression patterns of 11 miRNAs were consistent with the sequencing results (miR-149-5p, miR-24-3p, miR-199a-5p, miR-33a, etc.). According to KEGG pathway and Gene Ontology (GO) analyses, multiple predicted target genes were associated with lipid metabolism. In summary, this study provides a protocol of isolating bovine preadipocytes and screening various differently expressed miRNAs during preadipocyte differentiation.

Highlights

  • In terms of livestock products, beef is popular for its high protein and low fat contents.Improving beef quality is one of the main focuses of beef cattle breeding

  • The results show that DLK1 is a protein expressed in preadipocytes, and the fluorescence analysis exhibited higher expression levels in preadipocytes than in adipocytes

  • We found that miR-129-5p and miR-370, whose target gene was verified as DLK1, were significantly expressed between preadipocytes and adipocytes

Read more

Summary

Introduction

In terms of livestock products, beef is popular for its high protein and low fat contents.Improving beef quality is one of the main focuses of beef cattle breeding. In terms of livestock products, beef is popular for its high protein and low fat contents. The sensory indicators for evaluating beef quality are mainly that of the marbling pattern, the tenderness, the juiciness, and the meat color [1]. Fat content is the most important factor affecting beef quality sensory indicators. The order of fat deposition in animal ontogenesis is generally visceral fat first, followed by subcutaneous fat (SCF), and intramuscular fat (IMF) [4,5]. SCF affects carcass surface fat coverage rate, and IMF affects marbling and tenderness. The isolation of primary preadipocytes from SCF in vitro could contribute to further studies for bovine fat deposition and beef quality improvement. We discussed the method of isolating the primary preadipocytes, and optimized the induction conditions to improve the induction efficiency

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.