Abstract

Foshtiazate is an organophosphorus nematicide commonly used in protected crops and potato plantations. It is toxic to mammals, birds and honeybees, it is persistent in certain soils and can be transported to water resources. Recent studies by our group demonstrated, for the first time, the development of enhanced biodegradation of fosthiazate in agricultural soils. However, the micro-organisms driving this process are still unknown. We aimed to isolate soil bacteria responsible for the enhanced biodegradation of fosthiazate and assess their degradation potential against high concentrations of the nematicide. Enrichment cultures led to the isolation of two bacterial cultures actively degrading fosthiazate. Denaturating Gradient Gel Electrophoresis analysis revealed that they were composed of a single phylotype, identified via 16S rRNA cloning and phylogenetic analysis as Variovorax boronicumulans. This strain showed high degradation potential against fosthiazate. It degraded up to 100mgl-1 in liquid cultures (DT50 =11·2days), whereas its degrading capacity was reduced at higher concentration levels (500mgl-1 , DT50 =20days). This is the first report for the isolation of a fosthiazate-degrading bacterium, which showed high potential for use in future biodepuration and bioremediation applications. SIGNIFICANCE AND IMPACT OF THE STUDY: This study reported for the first time the isolation and molecular identification of bacteria able to rapidly degrade the organophosphorus nematicide fosthiazate; one of the few synthetic nematicides still available on the global market. Further tests demonstrated the high capacity of the isolated strain to degrade high concentrations of fosthiazate suggesting its high potential for future bioremediation applications in contaminated environmental sites, considering high acute toxicity and high persistence and mobility of fosthiazate in acidic and low in organic matter content soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.