Abstract

Kinetoplast DNA networks were isolated from stationary-phase culture forms of Phytomonas davidi. The networks banded in CsCl at a density of 1.699 g/ml and consisted of covalently closed circular molecules. The networks were sensitive to shear forces and exhibited several discrete sedimenting components in neutral and alkaline sucrose. Closed monomeric minicircles were isolated from sonicated networks by alkaline band sedimentation. Closed monomers showed a heterogeneous banding pattern on electrophoresis in acrylamide-agarose gels and had sedimentation coefficients of 20.5 S in alkaline sucrose and 11 S in neutral sucrose. The mean minicircle molecular weight as measured by cospreading with φXRF II was 0.70 × 10 6 or 1064 nucleotide pairs. Minicircles exhibited a sequence microheterogeneity as evidenced by restriction enzyme analysis, melting analysis, and renaturation kinetics. Network maxicircles were evidenced by the appearance of high molecular weight fragments after restriction with several enzymes and by the existence of supertwisted “edge loops” extending out from the periphery of networks. The maxicircle molecular weight was estimated to be approximately 24 × 10 6. A purified kinetoplast-mitochondrion fraction was found to contain 9 and 12 S RNA species that comigrated with L. tarentolae 9 and 12 S kinetoplast RNAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.