Abstract

The big blue octopus, Octopus cyanea, occurs on coral reefs throughout the Indo-Pacific region from East Africa to the Hawaiian Islands, wherein it is of great ecological and socio-economic importance. However, many components of its intraspecific biodiversity, such as population structure, are unresolved due to a lack of informative genetic markers. To address this issue, which may compromise conservation and sustainability efforts, the development and characterisation of the first species-specific microsatellite loci for O. cyanea are described here. The eight loci were characterised by the genotyping of 40 adults from Madagascar, which revealed an average of 13.5 alleles per locus (range 9–18). The observed and expected heterozygosity per locus ranged from 0.432 to 0.949 and from 0.481 to 0.989, respectively. No evidence of linkage disequilibrium was detected between pairs of loci. Genotype proportions at six loci conformed to Hardy–Weinberg equilibrium expectations, with two loci exhibiting significant heterozygote deficits. These loci are applicable to multiple areas of eco-evolutionary research and, thus, represent a valuable resource for future studies of O. cyanea.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.