Abstract
Conjugated polymers represent a promising class of organic semiconductors with potential applications in a variety of molecular devices. Poly(3-alkylthiophene)s, in particular, are garnering interest due to their large charge carrier mobility and band gap in the visible region of the spectrum. Defects play a pivotal role in determining the performance of polymer electronics, and yet the function of specific types of defects is still largely unknown. Density functional theory calculations of alkyl-substituted oligothiophenes are used to isolate the effect of static inter-ring torsion defects on key parameters such as electronic coupling between rings and band gap. Results have potential implications both for the fundamental understanding of intramolecular charge transport and for improving processing in organic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.