Abstract
Defect engineering is a well-established approach to customize the functionalities of perovskite oxides. In demanding high-power applications of piezoelectric materials, acceptor doping serves as the state-of-the-art hardening approach, but inevitably deteriorates the electromechanical properties. Here, a new hardening effect associated with isolated oxygen vacancies for achieving well-balanced performances is proposed. Guided by theoretical design, a well-balanced performance of mechanical quality factor (Qm ) and piezoelectric coefficient (d33 ) is achieved in lead-free potassium sodium niobate ceramics, where Qm increases by over 60% while d33 remains almost unchanged. By atomic-scale Z-contrast imaging, hysteresis measurement, and quantitative piezoresponse force microscopy analysis, it is revealed that the improved Qm results from the inhibition of both extrinsic and intrinsic losses while the unchanged d33 is associated with the polarization contributions being retained. More encouragingly, the hardening effect shows exceptional stability with increasing vibration velocity, offering potential in material design for practical high-power applications such as pharmaceutical extraction and ultrasonic osteotomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.