Abstract

We placed isoflurane, a general anaesthetic, inside palmitoyloleoylphosphatidylcholine (POPC) bilayers at clinical concentration, and performed molecular dynamics simulations at atmospheric and raised pressures, using two different thermodynamic ensembles. We also performed a simulation of this system with isoflurane at ten times the clinical concentration. We found that isoflurane did not aggregate inside POPC membranes at 20MPa, nor at 40MPa. The implications of these findings for pressure reversal is discussed, in light of the high-pressure neurological syndrome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.