Abstract

One-month old calli of two indica rice genotypes, i.e., Basmati-370 and Basmati-Kashmir were subjected to two iso-osmotic concentrations (−0.57 MPa and −0.74 MPa) created with 50 and 100 mol m−3 NaCl or 10 and 18% solutions of PEG-8000. Both genotypes tolerated only low levels of stress and showed severe growth suppression at −0.74 MPa. The degree of stress tolerance of both genotypes was greater for PEG induced stress than for NaCl induced stress. The relative growth rate of callus was reduced under both stresses, however, the reverse was true for callus dry weight. Sodium (Na+) content of the callus tissue was increased only under NaCl induced stress. Salt induced stress reduced K+ and Ca2+ contents, but the PEG induced stress increased them. Higher levels of stress increased the proline content many folds with more increase being under PEG stress than that under NaCl. Water and osmotic potentials of the callus tissue decreased, whereas turgor potential increased under both abiotic stresses. Overall, Basmati-370 was more tolerant to both NaCl and PEG induced stresses than Basmati-Kashmir, because of less reduction in growth and more dry weight. Moreover, Basmati-370 accumulated higher amounts of cations, free proline, and maintained maximum turgor as compared to Basmati-Kashmir. In conclusion, at cellular level, mechanism of NaCl induced osmotic stress tolerance was found to be associated with more ionic accumulation of inorganic solutes and that of PEG induced osmotic stress tolerance with the accumulation of free proline, as an important osmolyte in the cytosol.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.