Abstract

Pulmonary ischemia/reperfusion injury represents a common clinical phenomenon after lung transplantation, pulmonary embolism, and cardiac surgery with extracorporeal circulation. We investigated the influence of ischemic and endotoxin pre-conditioning on gas exchange and surfactant properties in a canine model of ischemia/reperfusion injury. Twenty-six foxhounds underwent 3 hours of warm ischemia of the left lung, followed by 8 hours of reperfusion. Ischemic pre-conditioning was performed for either 5 minutes (IPC-5) or by 2 10-minute ischemic periods (IPC-10), before ischemia. For endotoxin pre-conditioning, dogs were pre-treated by a daily intravenous application of increasing amounts of endotoxin for 6 days. No pre-conditioning was performed in the controls. Bronchoalveolar lavage was performed before ischemia/reperfusion injury (baseline) and after the 8-hour reperfusion period in the non-injured right and in the reperfused left lung. Bronchoalveolar lavage fluids were analyzed for the phospholipid-protein ratio, the content of large surfactant aggregates, the phospholipid and neutral lipid profile, the surfactant protein (SP) content, and for biophysical activity. Severe surfactant alterations were observed in the ischemia/reperfusion-injured left lung, with increased protein concentrations and depressed concentrations of large surface aggregates, SP-B, dipalmitoylated phosphatidylcholine, and phosphatidylglycerol. Endotoxin pre-conditioning and IPC-5 were both capable of greatly preventing the ischemia/reperfusion injury-related deterioration of surfactant properties. IPC-10 exerted no effects. Endotoxin pre-conditioning and IPC-5, but not IPC-10, also prevented loss of gas exchange. Ischemic and endotoxin pre-conditioning may protect against impairment of gas exchange in ischemia/reperfusion injury by restoring physiological surfactant properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.