Abstract

The effects of the neurotropic drug isaxonine on fully hydrated dipalmitoyl-phosphatidylcholine (DPPC) bilayers has been studied in the temperature range 0°–60°, using differential scanning calorimetry and electron spin resonance spectroscopy, with two stearic acid spin labels. At low concentration (1% mol/mol), isaxonine is trapped in the polar interface and enhances the phospholipid multibilayers organization in the gel state. In contrast, at high concentration (30% mol/mol), the drug disorganizes the phospolipidic structures and may induce domain formation by phase separation. The strong interactions of isaxonine at the lipid-water interface change the ionization state of the stearic acid spin labels which become totally ionized. Then isaxonine acts as a modifier of the surface pH of the bilayer. The strong membrane effects of isaxonine may explain in part its pharmacological properties in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.