Abstract

Nitric oxide (NO), produced by the action of the inducible NO synthase, plays a crucial role in cytokine toxicity to pancreatic beta cells during type 1 diabetes development. It was the aim of this study to analyze the role of the neuronal NOS (nNOS) in proinflammatory cytokine-mediated beta cell toxicity. Expression of different isoforms of nitric oxide synthase in insulin-secreting INS1E cells and rat islets was analyzed by quantitative real-time PCR and Western blotting. The expression of nNOS in insulin-secreting INS1E cells was similar to that found in rat brain, while two other isoforms, namely the endothelial eNOS and inducible iNOS were not expressed in untreated cells. IL-1β alone or in combination with TNF-α and/or IFNγ induced iNOS but not eNOS expression. In contrast, nNOS expression was strongly decreased by the mixture of the three proinflammatory cytokines (IL-1β, TNF-α and IFNγ) both on the gene and protein level in INS1E cells and rat islet cells. The effects of cytokines on glucose-induced insulin-secretion followed the pattern of nNOS expression reduction and, on the other hand, of the iNOS induction. The data indicate that a low level of nitric oxide originating from the constitutive expression of nNOS in pancreatic beta cells is not deleterious. In particular since proinflammatory cytokines reduce this expression. This nNOS suppression can compensate for NO generation by low concentrations of IL-1β through iNOS induction. Thus, this basal nNOS expression level in pancreatic beta cells represents a protective element against cytokine toxicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.