Abstract
AbstractThis paper examines the intertemporal relation between risk and return for the aggregate stock market using high‐frequency data. We use daily realized, GARCH, implied, and range‐based volatility estimators to determine the existence and significance of a risk–return trade‐off for several stock market indices. We find a positive and statistically significant relation between the conditional mean and conditional volatility of market returns at the daily level. This result is robust to alternative specifications of the volatility process, across different measures of market return and sample periods, and after controlling for macro‐economic variables associated with business cycle fluctuations. We also analyze the risk–return relationship over time using rolling regressions, and find that the strong positive relation persists throughout our sample period. The market risk measures adopted in the paper add power to the analysis by incorporating valuable information, either by taking advantage of high‐frequency intraday data (in the case of realized, GARCH, and range volatility) or by utilizing the market's expectation of future volatility (in the case of implied volatility index). Copyright © 2006 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.