Abstract
AbstractNoble gases in ice cores enable reconstructions of past mean ocean temperature. A recent result from the clathrate‐containing WAIS Divide Ice Core showed tight covariation between ocean and Antarctic temperatures throughout the last deglaciation, except for the Younger Dryas interval. In the beginning of this interval, oceans warmed at 2.5 °C/kyr—three times greater than estimates of modern warming. If valid, this challenges our understanding of the mechanisms controlling ocean heat uptake. Here we reconstruct mean ocean temperature with clathrate‐free ice samples from Taylor Glacier to test these findings. The two records agree in net temperature change over the Younger Dryas, but the Taylor Glacier record suggests sustained warming at the more modest rate of 1.1 ± 0.2°C/kyr. We explore mechanisms to explain differences between records and suggest that the noble gas content for the Younger Dryas interval of WAIS Divide may have been altered by a decimeter‐scale fractionation during bubble‐clathrate transformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.