Abstract

The often used approach in the corrosion inhibition studies employing quantum chemical calculations that relies on the correlation between molecular electronic structure parameters and inhibition effectiveness is critically examined. It is shown that the inhibition performance of three selected triazole-based corrosion inhibitors for copper – 3-amino-1,2,4-triazole (ATA), benzotriazole (BTAH), and 1-hydroxybenzotriazole (BTAOH) – cannot be explained on this basis in a sound manner. As the effectiveness of inhibitors is due to several phenomena, the outcome depends on the interplay between them and although molecular electronic parameters may provide many necessary elements, the involved effects can be estimated only approximately which may not always suffice. This supports the proposition that in general molecular electronic properties cannot be directly related to inhibition effectiveness – the actual relation is more involved – thus emphasizing the importance of a rigorous modeling of the inhibitor–surface interaction in the corrosion inhibition studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.