Abstract

Idiopathic intracranial hypertension (IIH) usually occurs in obese women of childbearing age. Typical symptoms are headache and sight impairment. Lumbar puncture (LP) is routinely used for both diagnosis and therapy (via cerebrospinal fluid drainage) of IIH. In this study, noninvasively assessed intracranial pressure (nICP) was compared to LP pressure (LPP) in order to clarify its feasibility for the diagnosis of IIH. nICP was calculated using continuous signals of arterial blood pressure and cerebral blood flow velocity in the middle cerebral artery, a method which has been introduced recently. In 26 patients (f = 24, m = 2; age: 33 ± 11 years), nICP was assessed one hour prior to LPP. If LPP was > 20 cmH2O, lumbar drainage was performed, LPP was measured again, and also nICP was reassessed. In total, LPP and nICP correlated with R = 0.85 (p < 0.001; N = 38). The mean difference of nICP-LPP was 0.45 ± 4.93 cmH2O. The capability of nICP to diagnose increased LPP (LPP > 20 cmH2O) was assessed by ROC analysis. The optimal cutoff for nICP was close to 20 cmH2O with both a sensitivity and specificity of 0.92. Presuming 20 cmH2O as a critical threshold for the indication of lumbar drainage, the clinical implications would coincide in both methods in 35 of 38 cases. The TCD-based nICP assessment seems to be suitable for a pre-diagnosis of increased LPP and might eliminated the need for painful lumbar puncture if low nICP is detected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.