Abstract

Abstract The ratio of the buoyancy force driving thermal convection to the surface wave vortex-force driving Langmuir circulation in the Craik–Leibovich mechanism involves the Hoenikker number Ho. The critical value Hoc, at which wave forcing and thermal convection contribute equally to the circulation, is found to increase with decreasing Langmuir number La and approaches 3 in the small La limit. For a typical wind speed and surface cooling, Ho is of order O(10−2) to O(10−1). Thus, wave forcing dominates over thermal convection in driving Langmuir circulation. Stratification induced by strong surface heating suppresses the circulation generated by wave forcing and could completely inhibit the CL instability. In the physically plausible range of −0.1 < Ho < 0, however, this does not happen for small La and the dynamical effect of heating is very small. For a given heat flux, the temperature difference between the regions of surface divergence and convergence in Langmuir circulation depends on Ho, Pr, and ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.