Abstract
Population seroprevalence can be estimated from serosurveys by classifying quantitative measurements into positives (past infection/vaccinated) or negatives (susceptible) according to a fixed assay cut-off. The choice of assay cut-offs has a direct impact on seroprevalence estimates. A time-resolved fluorescence immunoassay (TRFIA) was used to test exposure to human parvovirus 4 (HP4). Seroprevalence estimates were obtained after applying the diagnostic assay cut-off under different scenarios using simulations. Alternative methods for estimating assay cut-offs were proposed based on mixture modelling with component distributions for the past infection/vaccinated and susceptible populations. Seroprevalence estimates were compared to those obtained directly from the data using mixture models. Simulation results showed that when there was good distinction between the underlying populations all methods gave seroprevalence estimates close to the true one. For high overlap between the underlying components, the diagnostic assay cut-off generally gave the most biased estimates. However, the mixture model methods also gave biased estimates which were a result of poor model fit. In conclusion, fixed cut-offs often produce biased estimates but they also have advantages compared to other methods such as mixture models. The bias can be reduced by using assay cut-offs estimated specifically for seroprevalence studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.