Abstract

In-service granular activated carbon (GAC) may transform into biological activated carbon (BAC) and remove contaminants through both adsorption and biodegradation, but it is difficult to determine its biodegradative capacity. One approach to understand the GAC biodegradative capacity is to compare the performance between unsterilized and sterilized GAC, but the sterilization methods may not ensure effective microbial inhibition and may affect adsorption. This study identified the 14C-glucose respiration rate as the best metric to evaluate the effectiveness of three sterilization methods: sodium azide addition, autoclaving, and γ irradiation. The sterilization protocols were refined, including continuously feeding 300 mg/L of sodium azide, three cycles of autoclaving, and 10-12 kGy of γ irradiation. Parallel minicolumn tests were conducted to identify sodium azide addition as the most broadly effective sterilization method with an insignificant effect on adsorption in most cases, except for the adsorption of anionic compounds under certain conditions. Nevertheless, this problem was solved by decreasing the azide dosage as long as it is still sufficient to provide effective microbial inhibition. This study helps to develop an approach that differentiates adsorption and biodegradation in GAC, which could be used by future studies to advance our understanding of BAC filtration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.