Abstract
In light of the shortcomings of current restorative brain-computer interfaces (BCI), this study investigated the possibility of using EMG to detect hand/wrist extension movement intention to trigger robot-assisted training in individuals without residual movements. We compared movement intention detection using an EMG detector with a sensorimotor rhythm based EEG-BCI using only ipsilesional activity. This was carried out on data of 30 severely affected chronic stroke patients from a randomized control trial using an EEG-BCI for robot-assisted training. The results indicate the feasibility of using EMG to detect movement intention in this severely handicapped population; probability of detecting EMG when patients attempted to move was higher (p 0.001) than at rest. Interestingly, 22 out of 30 (or 73%) patients had sufficiently strong EMG in their finger/wrist extensors. Furthermore, in patients with detectable EMG, there was poor agreement between the EEG and EMG intent detectors, which indicates that these modalities may detect different processes. A substantial segment of severely affected stroke patients may benefit from EMG-based assisted therapy. When compared to EEG, a surface EMG interface requires less preparation time, which is easier to don/doff, and is more compact in size. This study shows that a large proportion of severely affected stroke patients have residual EMG, which yields a direct and practical way to trigger robot-assisted training.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.