Abstract

Cadmium (Cd), a naturally occurring element, is a potentially biotoxic metal in terrestrial and aquatic ecosystems. Whether it is biotoxic or not will depend upon the concentration in the soil, its bioavailability and its potential transfer through the ecosystem. However, little data are available for losses to waterways, especially via surface runoff. A study was conducted on two long-term trials under pasture to determine how the concentration of Cd in the soil was affected by different irrigation and fertiliser regimes and in turn how this affected the potential for transfer in surface runoff and outwash of flood irrigation. Concentrations of total Cd in the soil varied from 0.06 to 0.58 mg kg−1 and reflected different rates of P fertiliser applied (from 0 to 376 kg superphosphate ha−1 year−1), but was also less (20–25% compared to dryland) in treatments receiving more frequent irrigation when the same rate of P was applied. This indicated that there was potential for transfer. An experiment using simulated rainfall to generate surface runoff indicated that the major form of Cd lost was dissolved (on average 65% <0.45 μm) and could be predicted by water extraction of the soil. Loads of Cd in outwash were significant (0.17 to 0.92 g ha−1 year−1) and at least as great as the measured leaching losses in other studies. Loads confirmed the loss of Cd from each trial was largely dissolved, and related to soil water-extractable Cd and the frequency of irrigation. While Cd concentrations in sediment from ditches receiving outwash were enriched, indicating potential transfer to waterways, the effect will likely be small due to dilution and sorption by sediment and thereby localised to areas closer to the farm. However, to minimise any potential impact, management should be directed to minimising the occurrence of outwash (e.g. by better irrigation timing) or Cd transfer by using less Cd-rich P fertiliser or minimising P fertiliser use in areas susceptible to surface runoff.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.