Abstract

Collaborative filtering (CF) recommender systems are typically unable to generate adequate recommendations in sparse datasets. Empirical evidence suggests that incorporation of a trust network among the users of a recommender system can significantly help to alleviate this problem. For this reason, some studies have been done on combining CF with trust-enhanced recommender system. In this study, we analyze the switching hybrid recommender system with the CF and trust-enhanced recommender system components from both rating coverage and mean absolute error point of view. Experiments on a dataset from Epinions.com prove that, although the rating coverage of this hybrid method is better than both (CF and trust-enhanced RS), but has lower accuracy than just using trust-enhanced RS. In other words, trust-enhanced RS outperforms the hybrid recommender system consisting of CF and trust-enhanced RS. Finally, we justify this result using analytical method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.