Abstract

BackgroundNormal voiding behavior in urethane-anesthetized rats includes contraction of the abdominal wall striated muscle, similar to the visceromotor response (VMR) to noxious bladder distension. Normal rat voiding requires pulsatile release of urine from a pressurized bladder. The abdominal wall contraction accompanying urine flow may provide a necessary pressure increment for normal efficient pulsatile voiding. This study aimed to evaluate the occurrence and necessity of the voiding-associated abdominal wall activity in urethane-anesthetized female ratsMethodsA free-voiding model was designed to allow assessment of abdominal wall activity during voiding resulting from physiologic bladder filling, in the absence of bladder or urethral instrumentation. Physiologic diuresis was promoted by rapid intravascular hydration. Intercontraction interval (ICI), voided volumes and EMG activity of the rectus abdominis were quantified. The contribution of abdominal wall contraction to voiding was eliminated in a second group of rats by injecting botulinum-A (BTX, 5 U) into each rectus abdominis to induce local paralysis. Uroflow parameters were compared between intact free-voiding and BTX-prepared animals.ResultsAbdominal wall response is present in free voiding. BTX preparation eliminated the voiding-associated EMG activity. Average per-void volume decreased from 1.8 ml to 1.1 ml (p < 0.05), and reduced average flow from 0.17 ml/sec to 0.11 ml/sec (p < 0.05). Intercontraction interval (ICI) was not changed by BTX pretreatment.ConclusionThe voiding-associated abdominal wall response is a necessary component of normal voiding in urethane anesthetized female rats. As the proximal urethra may be the origin of the afferent signaling which results in the abdominal wall response, the importance of the bladder pressure increment due to this response may be in maintaining a normal duration intermittent pulsatile high frequency oscillatory (IPHFO)/flow phase and thus efficient voiding. We propose the term Voiding-associated Abdominal Response (VAR) for the physiologic voiding-associated EMG/abdominal wall response, to distinguish it from the visceromotor response (VMR) to noxious bladder distension.

Highlights

  • Normal voiding behavior in urethane-anesthetized rats includes contraction of the abdominal wall striated muscle, similar to the visceromotor response (VMR) to noxious bladder distension

  • Whether the physiologic voiding-associated abdominal wall activity is the same reflex as the nociceptive VMR, and if it is necessary for normal voiding in rats has not been reported

  • Per-void volume and average urine flow were significantly decreased by botulinum toxin-A (BTX) pretreatment

Read more

Summary

Introduction

Normal voiding behavior in urethane-anesthetized rats includes contraction of the abdominal wall striated muscle, similar to the visceromotor response (VMR) to noxious bladder distension. Normal rat voiding requires pulsatile release of urine from a pressurized bladder. The abdominal wall contraction accompanying urine flow may provide a necessary pressure increment for normal efficient pulsatile voiding. This study aimed to evaluate the occurrence and necessity of the voiding-associated abdominal wall activity in urethane-anesthetized female rats. Similar contraction of the abdominal wall occurs in response to noxious distension of the bladder and bowel in mice and rats, and is termed the visceromotor reflex (VMR) [3]. Whether the physiologic voiding-associated abdominal wall activity is the same reflex as the nociceptive VMR, and if it is necessary for normal voiding in rats has not been reported. Nal wall response for a normal uroflow response would be assessed by selective paralysis of the abdominal wall using botulinum toxin-A (BTX), removing the abdominal pressure contribution to voiding

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.