Abstract

Analysis on natural convective heat transfer in different engineering systems allows optimization of the technical apparatus. For this purpose, numerical simulation of the fluid flow and heat transport within the system is combined with study of entropy generation. The latter is very important considering the Gouy–Stodola theorem of thermodynamics. The present research deals with the mathematical modeling of thermal convection and entropy generation in a right-angled trapezoidal cavity under the influence of sinusoidal vertical wall temperature distribution. Control Oberbeck–Galerkin finite element technique has solved Boussinesq equations formulated using the non-dimensional primitive variables. Analyses of flow structures, thermal and entropy generation patterns for different values of the Rayleigh number, and parameters of non-uniform wall temperature were performed. It was found that a rise in the sinusoidal wall temperature amplitude increases the average Nusselt and Bejan numbers and average entropy generation. Moreover, growth in the non-uniform wall temperature wave number decreases the energy transport strength and Bejan number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.