Abstract
As silicon carbide (SiC) is an inert material, it has attracted attention as an alternative material for the core components of nuclear fuel cladding. However, the corrosion of SiC under neutron irradiation has been reported, and this has been a bottleneck issue. Here, we semi-quantitatively introduced point defects into single crystal 3C-SiC layers by ion irradiation, and investigated their corrosion behavior in terms of the electrochemical activity associated with the point defects. The results showed a shift in corrosion potential and an increase in the corrosion current due to the introduction of defects. However, in the case of aluminum (Al)-doped SiC, these changes were more moderate than in the cases of the nitrogen (N)- or boron (B)-doped material, implying that Al-doped SiC has a better tolerance against corrosion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.