Abstract

Gibberellin has been proposed to increase leaf elongation in radish (Raphanus sativus L.) plants, which is associated with decreased tuber growth. Since light intensity can control growth through interaction with gibberellin, investigation of the effect of gibberellin levels on the growth of radish plants would be a step forward towards unraveling factors that underlie biomass accumulation and allocation in response to irradiance levels. Here, we report that the gibberellin biosynthesis inhibitor paclobutrazol (PAC) decreased petiole elongation, but not lamina growth of radish plants grown under full sunlight. However, shading promoted an increase in shoot elongation, while in plants treated with PAC the petiole and leaf lamina fail to elongate. Plants treated with PAC allocated proportionally more biomass to their tubers and less to shoot compared to control under shade. Moreover, PAC decreased the abundance of transcripts encoding cell wall expansion proteins in leaf lamina and petiole of plants grown under shade, which was positively correlated with sugar consumption by the tuber, thereby increasing the mass fraction and concentrations of minerals for tuber. Thus, allocation of biomass during the growth of radish plants and nutritional quality of tubers depend on gibberellin and light intensity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.