Abstract

Electrocatalytic water splitting for hydrogen evolution is significantly impeded by the kinetically sluggish oxygen evolution reaction (OER). Thus, the development of highly efficient and durably stable non-noble-metal OER electrocatalyst is necessary and challenging for the large-scale electrocatalytic water splitting. Herein, a series of iron-substituted cobalt-nickel phosphides grown on Ni foam (FeCoNi-P/NFs) were easily prepared though successive hydrothermal and phosphorization treatments. The chemical compositions, crystalline and electronic structures as well as surface morphologies of these resulting electrocatalysts are strongly related with the iron substitution ratio. More interestingly, the FeCoNi-P/NF-2 nanosheet arrays prepared from equivalent molar ratio of iron and cobalt precursors exhibit the best OER performance with a low overpotential of 266 mV to produce a current density of 50 mA cm−2 and a low Tafel slope of 61.2 mV dec−1 in 1.0 M KOH condition, which is comparable to the reported state-of-the-art OER electrocatalysts. Additionally, the FeCoNi-P/NF-2 nanosheet arrays also show satisfactory long-term durability over 60 h. The superior OER activity of the electrocatalyst is essentially attributed to the heteroatomic substitution and the unique three-dimensional hierarchical morphology, which greatly increase the electrical conductivity, afford more active sites and facilitate the efficient charge transfer ability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.