Abstract
Transcranial magnetic stimulation requires a great deal of power, which mandates bulky power supplies and produces rapid coil heating. The authors describe the construction, modeling, and testing of an iron-core TMS coil that reduces power requirements and heat generation substantially, while improving the penetration of the magnetic field. Experimental measurements and numeric boundary element analysis show that the iron-core stimulation coil induces much stronger electrical fields, allows greater charge recovery, and generates less heat than air-core counterparts when excited on a constant-energy basis. These advantages are magnified in constant-effect comparisons. Examples are given in which the iron-core coil allows more effective operation in research and clinical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.