Abstract
AbstractThe fusion of transition-metal catalysis with radical chemistry provides a versatile platform for the asymmetric radical carboazidation of alkenes to enable the rapid assembly of highly functionalized chiral azide compounds. Here, we present an iron-catalyzed asymmetric three-component radical carboazidation that processes electron-deficient alkenes by direct activation of aliphatic C–H bonds. This strategy provides access to a range of valuable chiral azides from readily available chemical feedstocks bearing a tetrasubstituted carbon stereocenter, and their synthetic potential is further showcased through straightforward transformations to provide other valuable enantioenriched building blocks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.