Abstract

AbstractThe procedure for synthesizing proto-imogolite (an acid-soluble hydroxy-aluminium orthosilicate complex) and imogolite (a tubular aluminosilicate mineral) was used to produce ferruginous aluminosilicates over a range of Al/Fe ratios to determine whether Fe3+ can be incorporated in the imogolite structure. Analysis of the synthesized products by transmission electron microscopy, electron diffraction, and IR spectroscopy indicated that, while imogolite was formed in the presence of iron, increased Fe3+ in the systems caused the formation of ferrihydrite and poorly-organized aluminosilicates resembling proto-imogolite allophane. Treatment of these materials with Na-citrate/dithionite/bicarbonate dissolved the ferrihydrite and poorly-organized aluminosilicate, and concentrated products with tubular morphology. Analysis of the structural Fe3+ by ESR spectroscopy suggested that little or no Fe3+ was incorporated in the structure of imogolite, although the less crystalline proto-imogolite allophane may have accommodated some structural Fe3+. A separate iron-rich product, identified as ferrihydrite, was formed at low Al/Fe ratios. Mössbauer spectroscopic analysis of 57Fe3+ doped at very low levels into proto-imogolite and imogolite indicated that the sites of substitution were better defined in the latter. At least part of this Fe3+ may have been incorporated in the structure of boehmite, an impurity formed during synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.