Abstract

In this study, a novel, high surface area iron phosphonate (IP) for highly efficient adsorption of uranyl ion in acidic medium was described. The as-prepared IP was amorphous with its specific surface area and total pore volume as high as 268 m2/g and 1.04 cm3/g, respectively. Particularly, the as-prepared IP with ferrous ions and oxygen, nitrogen-bearing functional groups prove excellent U(VI) adsorption capacity (154.6 mg/g) as compared to that of amorphous FePO4 (67.3 mg/g) and Fe3(PO4)2(H2O)8 (33.8 mg/g). Surprising, the saturation adsorption capacity could achieve up to 353.9 mg/g. Besides, the IP also had a fast adsorption rate for attaining adsorption equilibrium within 20 min, and followed pseudo-second-order kinetic and Freundlich models. Moreover, both the Dubinin-Radushkevich isotherm adsorption model and the value of enthalpy indicated a chemisorption process. Otherwise, the Na+-independent U(VI) adsorption on IP and the adsorption-desorption isotherm studies revealed that inner-layer surface complexation is the control step for U(VI) adsorption process, and the adsorbent featured an irreversible adsorption process. The structure and functional groups of the adsorbent remained unchanged after capture of U(VI). Further, X-ray photoelectron spectra (XPS) analysis demonstrated that the capture mechanism of U(VI) on IP from acidic aqueous solution was due to not only redox reaction, but also ascribed to the coordinated chemical adsorption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.