Abstract

The concentration of rock-forming elements, the static magnetic susceptibility κ, spectra of electron paramagnetic resonance, and their relative intensities I are studied in samples from a borehole drilled in Cenozoic sedimentary deposits of southern Western Siberia. All measured values experience appreciable irregular variations with depth. A linear dependence exists between κ and I within the range of their medium and large values; κ and I have maximum values in the same sample, and κmax = 1920 × 10−6SI, κmin = 210 × 10−6 SI, and κav = 630 × 10−6 SI. The magnetic properties of the samples are controlled by Fe2+ ions present in clastic material and by microphases (clusters) with Fe3+ ions of the goethite and lepidocrocite type present in the cement. The theoretically possible magnetic susceptibility of the Fe2+ ion system (provided that all iron exists in this form) is quite comparable with κmin but, even with very high concentrations of Fe2+, does not reach half of κav: (154 < κ(Fe2+) < 254) × 10−6 SI. Anomalously high values of κ are due to a large number of clusters with Fe3+ ions if structural units FeOOH do not dissociate and the interaction of the clusters with hydroxides of aluminum and precipitation medium impedes the process of their coagulation. Otherwise, the cluster sizes gradually increase, an antiferromagnetic structure develops in clusters, and the magnetic susceptibility decreases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.