Abstract

The oxidation of the endocrine disruptor, diethylstilbestrol (DES) in aqueous media by ultrasound is significantly enhanced by Fe(II) catalyst. The observed enhancement is likely the result of increased levels of hydroxyl radicals from the iron-promoted reduction of the hydrogen peroxide produced during ultrasonic irradiation. The degradation is effective over a range of concentrations and is consistent with pseudo first-order kinetics. Relatively high concentrations of hydrogen peroxide, ∼450 mM, are present in solution under our experimental conditions after 1 h of ultrasonic irradiation (665 kHz). The concentration of H 2O 2 in solution decreased with the addition of Fe(II) along with an increase in the degradation of DES. Hydrogen peroxide alone does not appreciably degrade DES. Our results demonstrate ultrasonic-induced degradation of DES can be accelerated with the addition of Fe(II). The combination of ultrasonic irradiation and Fe(II)-promoted conversion of H 2O 2 to hydroxyl radical may provide a valuable strategy for the treatment of organic pollutants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.