Abstract

The fission yeast Schizosaccharomyces pombe excretes and accumulates the hydroxamate-type siderophore ferrichrome. The sib1(+) and sib2(+) genes encode, respectively, a siderophore synthetase and an l-ornithine N(5)-oxygenase that participate in ferrichrome biosynthesis. In the present report, we demonstrate that sib1(+) and sib2(+) are repressed by the GATA-type transcriptional repressor Fep1 in response to high levels of iron. We further found that the loss of Fep1 results in increased ferrichrome production. We showed that a sib1Delta sib2Delta mutant strain exhibits a severe growth defect on iron-poor media. We determined that two metabolic pathways are involved in biosynthesis of ornithine, an obligatory precursor of ferrichrome. Ornithine is produced by hydrolysis of arginine by the Car1 and Car3 proteins. Although car3(+) was constitutively expressed, car1(+) transcription levels were repressed upon exposure to iron, with a concomitant decrease of Car1 arginase activity. Ornithine is also generated by transformation of glutamate, which itself is produced by two separate biosynthetic pathways which are transcriptionally regulated by iron in an opposite fashion. In one pathway, the glutamate dehydrogenase Gdh1, which produces glutamate from 2-ketoglutarate, was repressed under iron-replete conditions in a Fep1-dependent manner. The other pathway involves two coupled enzymes, glutamine synthetase Gln1 and Fe-S cluster-containing glutamate synthase Glt1, which were both repressed under iron-limiting conditions but were expressed under iron-replete conditions. Collectively, these results indicate that under conditions of iron deprivation, yeast remodels metabolic pathways linked to ferrichrome synthesis in order to limit iron utilization without compromising siderophore production and its ability to sequester iron from the environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.