Abstract

Abstract The effectiveness of different catalysts were compared in coal liquefaction experiments using a 250 ml stirred autoclave, 10 g of a Spanish Subbituminous A coal, 1 hour reaction time, 17 MPa operating pressure, 400 rpm stirring speed, at 425 and 450 °C with 2/1 and 3/1 tetralin/coal ratio. The liquefaction products were fractionated into oils, asphaltenes, preasphaltenes and solid residue using pentane, toluene and THF as extractive solvents. Three iron-oxide containing catalysts: red mud, an Fe2O3 aerosol and Cottrell ash (by-product of the aluminium industry); and three alumina supported catalysts: CMA, which is a conventional CoMo/Al2O3 catalyst, CZMA which in addition contains Zn as a second promoter, and CZMFA which has the alumina acidified with fluorine and also contains Zn, were compared. It has been reported that the addition of Zn and of F enhances the HDS, cracking, hydrocracking or hydrogenating activities of CoMo/Al2O3 catalysts in experiments with pure compounds. The objective of this study was to determine if the addition of Zn and of F has also a beneficial effect in the catalyst activities in coal liquefaction, and also to compare cheap iron containing catalysts with the more sophisticated and expensive alumina supported ones. The results showed that 1) Catalysts effects depend on the operating conditions used, and that with tetralin, a strong H-donor solvent, they never are very pronounced. 2) The supported catalysts have higher activities in coal liquefaction than the iron ones, but there are no significant differences among the catalysts within each group. 3) Zn, which is a cheaper metal than Co, can substitute succesfully for half the amount of Co and retain the activity of the CoMo/Al2O3 catalyst in coal liquefaction. 4) The addition of F to the CoMo/Al2O3 catalyst does not show a benefecial effect

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.