Abstract
Iron is an essential micronutrient for phytoplankton and can limit primary production in the ocean. Fe chemistry is highly controlled by its interaction with organic complexes (>99%). It is still unknown which organic compounds produced by cells have the ability to bind Fe. Within the pool of organic ligands, polyphenols are known to be exudated by marine diatoms and, in this study, the role of three polyphenols ((±) – catechin, sinapic acid and gallic acid) was studied in terms of dissolved Fe complexation via kinetic and titration approaches, and also their role as a source of Fe(II) in seawater. The results demonstrated that these three polyphenols are weak L2-type Fe-binding ligands according to the conditional stability constant, computed by using the kinetic approach (log K′Fe′L = 8.86–9.2), where the formation rate constant (kf) was 3.1·105–4.2·105 M−1 s−1 and the dissociation rate constant (kd) was 2.43·10−4–4.4·10−4 s−1. The conditional stability was also computed from the titration approach with log K′Fe′L from 8.6 to 9.5. These studied ligands also regenerated Fe(II) in seawater from 0.05% to 11.92%. The results obtained in this study suggest that polyphenols increase the persistence of dissolved Fe and should be considered as an important Fe-binding ligands in seawater to better understand the global biogeochemical cycles.This article is part of a special issue entitled: “Cycles of trace elements and isotopes in the ocean – GEOTRACES and beyond” - edited by Tim M. Conway, Tristan Horner, Yves Plancherel, and Aridane G. González.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.