Abstract

Ferritin is the main intracellular iron storage protein. Ferritin iron may be released by many reducing agents including ascorbate. In this work we report ferritin to catalyze the oxidation of ascorbate. The kinetics of this process were studied in detail in phosphate buffer (pH 7.40), at 37°C by using the Clark electrode technique and ESR. The catalytic effect of ferritin manifested itself as the increase both in the rate of oxygen uptake and steady-state concentration of the ascorbate radical. The ferritin catalytic activity was found to be modified by iron chelators, EDTA, Desferal (DFO) as well as by ferrozine (FRZ) which is widely used in kinetic studies on ferritin iron release thanks to the formation of a coloured complex with Fe(II). While EDTA promotes the catalytic action of ferritin, DFO and FRZ diminished it. From the comparison of the kinetics of ascorbate oxidation obtained in the current work and data on the kinetics of ferritin iron release reported by Boyer and McCleary ((1987) Free Rad. Biol. Med. 3, 389–395), we conclude that iron bound to ferritin rather than the iron released is likely responsible for ferritin catalytic action. In addition, it has been concluded that the use of FRZ as an analytical reagent in kinetic studies of reductive ferritin iron release requires taking into account the competitive character of the formation of the Fe(II)-FRZ complex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.