Abstract

Type 1 diabetes mellitus (T1DM) is an organ-specific autoimmune disease characterized by progressive destruction of insulin-secreting pancreatic β-cells. Both T-cell–mediated adaptive responses as well as innate immune processes are involved in pathogenesis. Interleukin-1 receptor–associated kinase M (IRAK-M) can effectively inhibit the MyD88 downstream signals in Toll-like receptor pathways, while lack of IRAK-M is known to be associated with autoimmunity. Our study showed that IRAK-M–deficient (IRAK-M−/−) nonobese diabetic (NOD) mice displayed early onset and rapid progression of T1DM with impaired glucose tolerance, more severe insulitis, and increased serum anti-insulin autoantibodies. Mechanistic studies showed that the enhanced activation and antigen-presenting function of IRAK-M−/− antigen-presenting cells from IRAK-M−/− mice were responsible for the rapid progression of disease. Moreover, IRAK-M−/− dendritic cells induced enhanced activation of diabetogenic T cells in vitro and the rapid onset of T1DM in vivo in immunodeficient NOD mice when cotransferred with diabetogenic T cells. This study illustrates how the modulation of innate immune pathways through IRAK-M influences the development of autoimmune diabetes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.