Abstract
Interpenetrating network (IPN) methacrylated chitosan or methacrylated flaxseed gum based hydrogels have been utilized to make outstanding in-vivo wound dressings. The photopolymerization process was accomplished in presence of Eosin-Y photoinitiator with average exposure time of 13–14 s for gelation. Spectroscopic structural investigations of 1H NMR. ATR-FTIR, TGA, and AFM techniques were used. In-vitro hemolysis test provided evidence of no cytotoxicity in both hydrogels observed. The in-vivo wound dressings were monitored for five mice coated with each hydrogel and another uncoated five mice for control (self-healing). All measurements were performed in quintuplicate (n = 5) and expressed as mean ± SD values. In wound healing dynamics, our data confirmed that wound healing pass through two stages; hemostasis and inflammation for stage 1, and proliferation and remodeling for stage 2. It also provided evidence of 1st order kinetics with descending rate of healing. Consequently, catalytic role of hydrogels in wound healing was checked via half-life (δ) and negative change of activation energy values (ΔEa). Various isothermal adsorption models demonstrated spontaneous and high binding affinities of hydrogels. It also confirmed the two-stage healing process in presence of hydrogels. Conclusively, the outstanding properties of the two hydrogels suggest their potential applications in treating venous ulcers and diabetic wound healing dressings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Photochemistry and Photobiology B: Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.