Abstract

Providing accurate information about the indoor environmental quality (IEQ) conditions inside building spaces is essential to assess the comfort levels of their occupants. These values may vary inside the same space, especially for large zones, requiring many sensors to produce a fine-grained representation of the space conditions, which increases hardware installation and maintenance costs. However, sound interpolation techniques may produce accurate values with fewer input points, reducing the number of sensors needed. This work presents a platform to automate this accurate IEQ representation based on a few sensor devices placed across a large building space. A case study is presented in a research centre in Spain using 8 wall-mounted devices and an additional moving device to train a machine learning model. The system yields accurate results for estimations at positions and times never seen before by the trained model, with relative errors between 4% and 10% for the analysed variables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.