Abstract

The critical interaction between the magnetosphere and ionosphere during intense geomagnetic storms continues to be important to space weather studies. In this investigation, we present and discuss the ionospheric F-region observations in the equatorial, low- and mid-latitude regions in both hemispheres over American sector during the intense geomagnetic storm on 01–03 June 2013. The geomagnetic storm reached a minimum Dst of −119nT at 0900 UT on 01 June. For this investigation, we present vertical total electron content (VTEC) and phase fluctuations (in TECU/min) from a chain of 10 GPS stations and the ionospheric parameters foF2 and h′F from a chain of 4 digital ionosonde stations, covering from equatorial to mid-latitudes regions over American sector during the entire storm-time period 31 May–03 June 2013. In addition, the plasma density observed from DMSP satellites is presented. The results obtained show that during the sudden impulse/SSC and throughout the main phase of the storm, a large positive phase was observed in mid-latitudes of the northern hemisphere, which could be due to changes in the thermospheric wind circulation. On the other hand, in the mid-latitudes of the southern hemisphere, no deviations are observed in VTEC and foF2 when compared to the quiet period. During the long recovery phase of the storm on 01–02 June, a north-south asymmetry is observed in the F-region. The study confirms the dominant role of the thermospheric winds on north-south asymmetry in the ionospheric F-region. The ionospheric irregularities are found to be confined in the equatorial region, of the bottomside spread-F type, before and during the geomagnetic storm. It shows that the geomagnetic storm did not affect the generation or suppression of ionospheric irregularities at the stations investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.